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The goals of aging biology research are broad and ambitious—
to understand how a multitude of genes, pathways and mech-
anisms at multiple scales contribute to declines in function, 

health and lifespan in ways that can vary across populations, envi-
ronments and species. Enormous progress has been made identify-
ing individual genes, pathways, molecules and their connection in 
mechanisms that modulate aging. However, there has been limited 
progress in our understanding of how these factors interact to pro-
duce a global set of aging processes, or in how these processes com-
bine to produce functional phenotypes of aging such as frailty, or 
demographic patterns such as the Gompertz mortality curves found 
across the tree of life1. Accordingly, research is increasingly focusing 
on understanding how mechanisms and pathways integrate, draw-
ing on concepts of complex systems such as resilience, homeostasis, 
networks and interactions. This transition to a complex systems 
view of aging has been happening piecemeal and is only sometimes 
explicitly acknowledged; many of the core concepts and methods 
are unfamiliar to biologists and may be defined in various ways. 
Here, we provide a theoretical framework and introduction to the 
key concepts of complex systems theory as applied to aging, as a 
primer to orient researchers new to the field and in the attempt to 
offer a unifying vision for how a complex systems approach could 
be transformative in aging biology research.

In this context, we consider aging to encompass sub-organismal 
biological processes leading to declines in organismal survival and 
function with the passing of time, including hierarchical scales 
ranging from molecular to clinical. We first provide a brief, non-
technical motivation for the need to address complexity and then 
introduce three salient aspects of complex systems in the context 

of aging biology—emergence, resilience and networks—providing 
examples of their use along with appropriate methods.

The history of ecology provides a useful comparison (Fig. 1). In 
the early 1970s, building on the systems ecology work of Odum2, 
Robert May introduced complex systems theory to ecology3–5. 
Among other things, this accelerated the transition from notions of 
‘food chains’ to ‘food webs’ and led to the complex nature of ecosys-
tems being widely recognized. This generated new key questions, 
such as how processes could (de)stabilize ecosystems. The transfor-
mation of ecology was rapid and thorough, both because previous 
theory was inadequate, and because emerging data and methods 
allowed formal analyses of ecosystems as complex systems. This did 
not negate the impact of straightforward ecological experiments 
such as predator removal, which continue to be a crucial part of the 
field6; however, they are now conducted in a research framework 
where the guiding questions presuppose complexity. Theoretical 
ecology has burgeoned, leading to formalization of notions such 
as resilience7 and critical transitions8, both of which have direct 
implications for aging research and are discussed below. Theoretical 
advances have also had major impacts on ecological applications, 
such as management of fisheries (Fig. 1) and forestry9,10.

A similar transformation has started in the field of aging biol-
ogy. The ideas of multifactoriality or complexity of aging emerged 
decades ago11–14, and by the 2000s the multifactorial nature of aging 
was widely aknowledged15. More recent seminal manuscripts on ‘the 
hallmarks of aging’16 and the ‘pillars of aging’17 implicitly invoked 
the concepts of networks, feedback loops and nonlinearity—hall-
marks of complex systems. We believe that, because of the extreme 
plasticity and redundancy of aging biology, no specific mechanism 
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or pathway is fully informative outside the context of the whole 
organism. Therefore, understanding aging will require detailed 
knowledge of specific implicated mechanisms contextualized in a 
‘complex systems’ approach, integrating across multiple hierarchi-
cal scales to achieve a functional, dynamical understanding of the 
organism. These approaches complement, but go beyond, classical 
bioinformatics and functional genomics approaches that are largely 
focused on high-throughput data in the absence of dynamics and 
structure, and the systems biology approaches that only tackle 
small-scale dynamical problems.

Two major challenges in aging biology research are the large 
volumes of data and lack of an organizing paradigm18–20; both may 
be aided by two key features of complex systems approaches. First, 
despite their name, complex systems approaches can be powerful 
tools for simplification, identifying the essential features in a mass 
of otherwise indecipherable data and largely unpredictable trajec-
tories. Second, the underlying patterns are driven by broad math-
ematical and biophysical principles, such that findings in one aspect 
of aging biology are likely to have direct applications in many others.

Both of these features are clearly evident in a classic example 
of how complexity science has led to a better understanding of 
aging and identified novel targets to prevent age-related disease. 
Lipsitz and colleagues have shown that aging is associated with a 
loss of structural and functional complexity in a variety of inte-
grated anatomic structures and physiological processes. This loss 
of complexity impairs an individual’s ability to adapt to the stresses 
of everyday life, leading to disease and disability13,21. Examples of 
the loss of complexity in anatomic structures with aging and its 
consequences include the degeneration of fractal-like trabecular 
networks in bone that leads to fractures, damage to the branching 
architecture of Purkinje fibers in the heart that leads to conduction 

disease, and thinning of the dendritic arbor of frontal lobe neurons 
that leads to gait disorders and falls. Dynamic physiological sys-
tems that lose complexity with aging and are consequently associ-
ated with adverse outcomes include heart rate (Fig. 2a), which is 
a predictor of lethal arrhythmias or cardiovascular disease21, sys-
tolic blood pressure, which is a predictor of dementia22, moment-
to-moment center-of-pressure changes during balance, which is 
a predictor of falls23, and the blood oxygenation signal in resting-
state functional magnetic resonance imaging, which is associated 
with slow gait speed in older adults24. The restoration of complex 
dynamics in various physiological systems through the use of vari-
ous multisystem interventions can improve functional abilities. 
For example, Tai Chi exercises improved balance complexity and 
associated mobility measures in older adults with peripheral neu-
ropathy25. Subsensory vibratory noise applied to the foot soles can 
improve balance complexity and mobility26. These findings provide 
preliminary evidence that complexity loss in a variety of anatomic 
structures and physiological systems is associated with disease and 
disability, but may be reversible through multidimensional inter-
ventions. They also show how complex data (for example, heart 
rate time series) can be simplified to measure a key underlying 
property (for example, heart rate complexity), as well as how such 
principles, once discovered, can generate a range of insights and 
benefits in different contexts.

The complex systems approach is ultimately a paradigm that 
reflects what we understand about organismal evolution and func-
tion, and major advances can be made by simply adopting this per-
spective. Indeed, many of the studies in Fig. 2 rely more on a complex 
systems perspective than on explicit complex systems methods. For 
example, more than 70 years ago Harman’s free radical theory of 
aging proposed that organisms age because cells accumulate free 
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Fig. 2 | Key examples of advances in aging biology using complex systems perspectives or methods. a, High complexity in heart rate variability (top) is 
characteristic of young individuals, whereas decreased complexity is characteristic of older individuals (adapted with permission from ref. 13, AMA). This 
finding led to measures of heart rate variability as indicators of health and aging. b, Physiological dysregulation, measured as the Mahalanobis distance 
of clinical biomarkers, increases with age in similar ways across 11 primate species (reproduced from ref. 133, CC BY 4.0). This shows conservation of 
physiological signatures of homeostasis and characterizes overall homeostatic state as an emergent property. c, Early warning signs of critical transitions, 
as measured through variance, temporal autocorrelation and cross-correlation in self-rated health data, are strongly associated with frailty status (adapted 
with permission from ref. 83, Oxford Univ. Press). This confirms predictions that system dynamics change jointly before adverse events. d, Different yeast 
cells show different cell fate trajectories along one of two canalized pathways or ‘modes’ (adapted with permission from ref. 56, Elsevier) (see main text).  
e, Bayesian approaches to estimating brain immune and microglial networks provide predictive insights into late-onset Alzheimer’s disease pathophysiology 
(adapted with permission from ref. 134, Elsevier). f, Different Caenorhabditis elegans survival curves at different temperatures (top) overlap perfectly  
when adjusted to the temporal scale of the lifespan (bottom) (adapted from ref. 118, Springer Nature Ltd). Accordingly, lifespan can be understood as  
an emergent property of underlying processes that adjust temporal scale. g, Directional network analysis of proteome and transcriptome in yeast  
shows loss of stoichiometry in protein complexes with aging, implying broadscale reorganization or dysregulation of regulatory networks (reproduced from 
ref. 135, CC BY 4.0). h, Simulated networks of interacting deficits propagated across the lifespan recapitulate observed dynamics of frailty and mortality 
(filled circles indicate damaged nodes) (adapted with permission from ref. 136, Elsevier).
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radical damage over time27. However, a number of experiments have 
since demonstrated that free radicals have important signaling roles 
that are essential for survival, and only when in great excess do they 
negatively affect cell and organismal survival28,29 (Fig. 1). Standard 
methods showed that intermediate levels of both antioxidants and 
free radicals are optimal and are therefore tightly regulated30. This 
fits redox balance neatly into the hormesis paradigm31, which relies 
on feedback loops and homeostasis/dynamic equilibrium, both 
characteristics of complex systems. We see this repeatedly: the units 

we study (molecules, pathways, cells and organs) are part of a larger 
system, and their behavior cannot be fully understood outside their 
interactions with its other units and of the state and dynamics of the 
system as a whole. Each element of the system, such as a metabo-
lite or a protein, has multiple biological effects, which is incompat-
ible with an assumption of simple pairwise interactions between 
molecules. Rather, biology is an ensemble of signaling pathways 
with a collective ‘voice’ that results from their combined interac-
tions. During aging, the state of equilibrium of this complex system 

Box 1 | Organisms as complex systems

Living systems share many properties with other complex sys-
tems32,33, including network dynamics, emergence, hierarchical 
organization and attractor states. However, they also have unique 
properties that are key to understanding aging biology:
 1. Optimized for evolutionary fitness. Living systems have 

been highly optimized by evolutionary processes over mil-
lions of years. This optimization has generated structures and 
behaviors distinct from less-optimized complex systems such 
as economies or climate.

 2. Components have dual roles as effectors and as informa-
tion. Biological networks are composed of molecules that 
both perform a function and signal to the rest of the system. 
For example, ATP serves a function not only as energy, but 
also as information, inhibiting pyruvate kinase in the pathway 
that forms it138. This dual role is rare in other complex sys-
tems. Biological networks are thus also information systems, 
and information flow is important.

 3. Trade-offs. Highly optimized complex systems, such as living 
systems, are forced into trade-offs to maintain robustness at 
the expense of resource use, performance or control42,51,61.

 4. Plasticity. Living systems adapt to changing environments 
and function in a variety of contexts (such as day/night, sum-
mer/winter and feeding/starvation), and selection has devel-
oped multiple systems that allow such plasticity at different 
scales.

 5. Larger parts list. Evolutionary processes generate unparal-
leled diversity—a typical organism will have tens of thousands 

of proteins and hundreds of thousands of splicing variants 
that control an even greater variety of metabolites.

 6. Complex hierarchy. The parts list, although large, is smaller 
than expected based on functional complexity. Many layers 
of biological organization/interactions are still being discov-
ered139, and the standard biological hierarchy (molecules, or-
ganelles, cells, tissues, organs, organ systems and organism) is 
only one of several parallel, interacting structures (figure in 
Box 1). These hierarchies interact over various temporal and 
spatial scales during aging.

 7. Functionality of attractor states. Attractor states are discrete 
states of complex systems to which the system converges, as 
exemplified by canalization and cell fates140,141. For example, 
cellular senescence is a relatively discrete state, an alternative 
to being a healthy cell or to apoptosis. Senescence is thus an 
attractor state, with many intermediate states within its ‘at-
tractor basin.’ Once an intermediate state is reached, the cell 
relatively quickly converges toward full senescence142. While 
attractor states also exist in undirected complex systems, in 
biological systems they are generally functional, correspond-
ing to the adaptive needs of the organism (above). Functional 
non-discrete states (‘attractor gradients’) exist as well (for ex-
ample, inflamm-aging131).

 8. Sparse data. Even with the advent of omics technologies, we 
are a long way from having a full map of most biological sys-
tems139, much less being able to measure them simultaneously. 
Many biological pathways have yet to be discovered!
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evolves through different levels of relative stability until homeosta-
sis is no longer possible and the organism dies.

Organisms as complex systems
Complex systems can be as diverse as ecosystems, economies, 
traffic systems and even the internet32–34, but are often surpris-
ingly similar in their characteristics and behavior. Core hallmarks 
of complex systems include: (1) networks of interacting elements 
(for example, interactions among molecules in key aging pathways 
such as hypoxia-inducible factor (HIF)-1, AMP-activated protein 
kinase (AMPK), mechanistic target of rapamycin (mTOR), sirtuins, 
insulin-like growth factor (IGF)-1R and forkhead box O (FOXO)35 
(Fig. 2c,e,h); (2) feedback/feedforward loops (for example, adaptive 
loops such as blood pressure regulation36 and maladaptive or run-
away loops such as cellular senescence increasing the senescence-
associated secretory phenotype (SASP), which increases cellular 
senescence through paracrine signaling37,38; Fig. 2d); (3) a multi-
scale or modular hierarchical structure (for example, organelles, 
nested in cells nested within tissues nested within organs, together 
with how damage propagates up, down or across such structures 
during aging39,40); (4) nonlinear dynamics (for example, accelerating 
decline in multiple systems at the end of life41; Fig. 2a,c,f); and (5) 
emergent properties, which are properties of a system that cannot 
be directly or additively inferred by examining its component parts 
(for example, cognitive decline or loss of mobility cannot be under-
stood simply as the sum of multiple aging cells; Fig. 2a,b,d,f).

There can be little doubt that both organisms and their subsystems 
such as cells behave as complex systems42,43 (Box 1), but, despite some 
key studies44–46, the literature on organisms as complex systems is not 
yet fully integrated into current biological research practice. A start-
ing point, as Theodosius Dobzhansky famously said, is that ‘Nothing 
in biology makes sense except in the light of evolution’47. Unlike in 
most other complex systems, natural selection has fine-tuned biolog-
ical complex systems over billions of years, generating biological soft-
ware for ‘life maintenance,’ at least into adulthood (Box 1). As such, 
organisms are not random collections of interacting molecules, but 
are highly optimized fitness-maximizing systems with redundancy, 
flexibility and resilience42. A crucial aspect of such fitness is the abil-
ity to maintain a state of dynamic equilibrium21, which encompasses 
homeostasis, homeodynamics, allostasis, robustness and resilience: 
can the organism maintain, adjust, and if perturbed return to what-
ever state is currently best for it48–52? Aging is thus a set of processes 
that occur within a complex system: in interacting networks struc-
tured by selection to maintain dynamic equilibrium, yet eventually 
failing to do so. Accordingly, we could add that ‘Nothing in aging 
biology makes sense except in the light of dynamic equilibrium,’ and 
conclude that we must eventually understand the interplay between 
evolution and dynamic equilibrium to fully understand aging.

Emergence: understanding the interplay between different 
scales of organization in aging
What is emergence? Geriatricians are intimately familiar with 
frailty, falls and delirium, three phenomena that are clinically 
important but that do not have simple underlying causal path-
ways41,53. Numerous interventions have nevertheless been identified 
to prevent, treat or manage them—notably complex or multimodal 
interventions. All three conditions are classic examples of emergent 
properties, properties of a system that cannot be understood by sim-
ply combining lower-scale features of the system54. In the case of 
frailty, for example, a relatively coherent phenotype emerges from 
underlying contributing processes, even though not all individuals 
with those underlying processes will become frail41.

Canalization and emergence. One common way that emergence 
arises is through canalization (Box 1), the tendency of the system to 
converge toward one of a limited number of discrete states. A striking  

example of canalization is the finding of two distinct cell fates in 
yeast aging (Fig. 2d). Yeast replicative aging is a genetically tractable 
model that encompasses many conserved hallmarks of aging, such 
as genomic instability, loss of proteostasis, reactive oxygen species 
and mitochondrial dysfunction55. These damage and stress factors 
were long studied independently and implicitly assumed to contrib-
ute more-or-less additively to the physiological declines and death 
of aged cells. When studied together by microfluidics coupled with 
time-lapse microscopy, isogenic BY4741 and W303 yeast cells show 
two different forms of aging: one with decreased ribosomal DNA 
silencing and nucleolar decline (mode 1), and the second with heme 
depletion and mitochondrial decline (mode 2)56–58. Intriguingly, 
the aging trajectories of mode 1 and mode 2 cells, quantified from 
molecular and cellular changes, are mutually exclusive. Distinct 
ending states correspond to discrete attractor states within complex 
systems theory. This canalization view of yeast aging nicely comple-
ments and extends population-level analyses showing that caloric 
restriction extends lifespan via various parallel pathways59. We 
anticipate that this dynamic, stochastic view of aging will open up 
strategies to rationally rewire gene networks and reprogram aging 
dynamics more effectively and robustly than simple gene deletions 
or overexpression.

Canalization and emergence often arise because biological net-
works can achieve robustness through redundancy, and so become 
buffered against perturbations—they are able to maintain a dynamic 
functional stability even when environmental or internal conditions 
change21,60,61. This buffering often means that the same functional 
result can be achieved by multiple alternative pathways, strategies 
or system states. For example, because of the effect of androgens, 
men often have higher muscle strength than women and rely on 
peak strength to optimize gait performance, while women more 
often rely on optimization and refinement of the motor program62. 
Furthermore, during skeletal muscle aging, impaired chaperone-
mediated autophagy appears to be compensated by upregulation 
of macro-autophagy63. A growing list of examples from diverse 
hierarchical scales suggests that, in the context of aging, alternative 
physiological and biochemical strategies are routinely used to com-
pensate for deficits, but that these ‘compensatory strategies’ may be 
less efficient or effective.

Emergence, hierarchical structure and their characterization. 
Frailty, inflamm-aging and yeast cell fates are examples of how 
core aspects of aging emerge at different scales of organization. 
Furthermore, mechanisms can emerge at higher scales (for example, 
tooth wear64) or can have effects from higher scales to lower scales 
(for example, impacts of psychological stress on telomere length65). 
A long-term goal in aging biology research should be a multi-scale 
mapping of emergent aging phenomena and mechanisms at each 
scale, and how they influence each other. For example, Kuo et al40. 
recently proposed that functional aspects of human aging such as 
declines in cognition can be mapped to changes in phenotype dur-
ing aging, which in turn can be mapped to basic biological processes. 
Whereas traditional approaches have often examined inter-scale 
relationships between one or two factors at a time66, the complex 
systems approach emphasizes the need for more integrative mod-
els. A good example is the maintenance of immune function during 
aging. The common conception that immune function declines with 
age is based on observations such as thymic involution, decreased 
production of naïve T cells, and impaired antigen presentation by 
dendritic cells67. However, at a functional level, otherwise healthy 
older adults generally mount sufficient immune responses to infec-
tions; further, when properly formulated, most vaccines can be just 
as effective in older adults, including for severe acute respiratory 
syndrome coronavirus 2 (refs. 68–71). Accordingly, there is no good 
one-to-one mapping between individual changes in the immune 
system with age and overall immune system functionality: overall 

NATuRE AGING | VOL 2 | JULY 2022 | 580–591 | www.nature.com/nataging584

http://www.nature.com/nataging


PersPectiveNature agiNg

functionality appears to be largely buffered. Appropriate under-
standing of how lower-scale changes percolate up to higher-scale 
effects will thus require complex systems approaches such as simu-
lations, modeling and high-dimensional analyses, all integrated 
with targeted experimental approaches tailored to this framework.

Discrete system states, such as cell fates or phenotypic frailty41, 
or continuous system states, such as inflamm-aging or metabolic 
syndrome72, reflect attractor basins or gradients as organizing bio-
logical principles that may be key to understanding aging. An intui-
tive analogy is that, driving past a cornfield, the corn can appear to 
be randomly planted until one sees the structure of the rows. When 
applied with a complex systems perspective, standard statistical/bio-
informatics tools such as principal-component analysis73, t-distrib-
uted stochastic neighbor embedding (t-SNE)74 and cluster analysis75 
can uncover structure and become tools for simplification. Many 
such attractor structures are yet to be identified73. This framework 

of defining emergent phenomena could help make major progress 
on longstanding challenges in aging research. For example, Figure 
3 shows what this might look like in the case of Alzheimer’s disease 
and related dementias, and shows how Alzheimer’s disease could 
be regarded as an emergent phenomenon akin to frailty or delir-
ium rather than as a direct product of pathways such as amyloid-β. 
Additionally, studying whether frailty is an attractor state or an 
attractor gradient could help to resolve the ongoing debate on phe-
notypic versus deficit accumulation definitions of frailty41,76.

Resilience and critical transitions: legacies from theoretical 
ecology
The dynamics, and in particular the resilience, of complex systems 
is a fundamental problem of many disciplines. In system dynamics, 
resilience is measured by the capability and the rate at which a sys-
tem converges to or departs from its equilibrium after a disturbance. 
Ecology has been influential in this field with the study of the net-
work properties conferring resilience. May77 and others78 proposed 
that resilience decreases with network complexity (size, number 
of connections between nodes and interaction strength) but that 
regular and organized features such as the existence of modules 
buffers the spread and impacts of perturbations. May’s theory is, 
however, limited because it applies to deterministic systems that are 
only very rarely disturbed, while in nature stochastic variations in 
the environment keep the system moving out of equilibrium. A sto-
chastic theory of resilience was therefore proposed7, and was used 
as the backbone of critical transition theory8. Instead of looking at 
the asymptotic behavior of the system, this theory investigates the 
distribution of the system around equilibrium. The variance and 
temporal autocorrelation of time series are expected to increase as 
resilience decreases.

These insights from ecological systems provide a useful intu-
ition to understand aging. If physiological systems are networks of 
interacting elements, then we can apply stochastic resilience theory 
to interpret dynamics of a whole suite of biological markers with 
aging. A key feature providing resilience to interacting networks 
is self-regulation within modules, while interactions among them 
might decrease resilience (but see ref. 79). One could therefore ask 
how these two fundamental quantities change during aging. In par-
ticular, the variance of individual markers and the temporal covari-
ances among them are expected to increase with age. Theory also 
proposes that a sudden increase in these properties can be used to 
anticipate critical changes in the state of the system.

Resilience and critical transitions are indeed both gaining 
increasing attention in the aging literature80–84. The formal definition 
from ecology agrees well with common conceptions of resilience in 
the aging literature, and allows us to build on the stressor–response 
paradigm. The literature on frailty and resilience hypothesizes that 
deleterious changes in homeostatic mechanisms may be hidden in 
the absence of external stressors such as infection, injury or organ-
system-based illness. Consequently, frail and non-frail individuals 
may differ more in how they respond dynamically to stressors than 
in their baseline status85,86. Varadhan85 proposed a dynamical sys-
tems modeling approach, based on the stimulus–response experi-
mental paradigm, to study loss of resilience associated with frailty. 
This approach successfully distinguished older frail and non-frail 
women in the Women’s Health and Aging Study by response to vari-
ous physiological stimuli86,87. Similar approaches to resilience have 
been developed in mouse models81.

Critical transitions are abrupt changes in the state of a complex 
system, often toward collapse. While simpler systems often show 
linear changes in function or state, complex systems often have 
the internal buffering mechanisms mentioned above that help to 
maintain function such that any crash occurs suddenly. Predicting 
critical transitions usually requires detailed time series data but not 
experimental intervention, and can be quite powerful. For example, 
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Fig. 3 | Multi-scale causality: the example of Alzheimer’s disease. 
Dementia provides one illustration of how the science of complex 
systems can help us better understand dementia’s biological processes. 
First, healthy brain function can be viewed as an emergent property of 
a complex system, requiring interactions across multiple scales from 
neurons to networks to social and environmental components, while 
disease (in this case dementia) arises from the breakdown of these 
interacting components. Thus, dementia may result from the loss of 
complex interactions among determinants of healthy cognitive function 
operating on different scales in time or space. This includes the breakdown 
of components shown here, including at a cellular scale (interactions 
among neuroinflammation, the immune context and the accumulation of 
amyloid and tau that disrupts neuronal integrity); at a tissue scale (brain 
atrophy); at a person scale (decreased sleep, reduced physical activity, 
depression and cardiovascular risk factors); and at a societal scale (social 
isolation, environmental toxins and other influences)137. The complex nature 
of healthy function enables compensation and resiliency, which protects 
against cognitive decline until the loss of complexity reaches a threshold 
at which overt disease and disability emerge. This Alzheimer’s disease 
model is an example of the hierarchical principles in the figure in Box 1, but 
remains speculative.
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resilience in postural balance and self-rated health is associated with 
successful aging and protection against frailty83,88, and early warn-
ing signs of critical transitions can strongly predict mortality and 
frailty in individuals undergoing hemodialysis84,89,90. Current work 
has barely scratched the surface of what paradigms of resilience and 
critical transitions might teach us about how ensembles of underly-
ing mechanisms collectively wear down internal buffering mecha-
nisms during aging.

Networks
An important characteristic of many biological complex systems is 
their organization into networks of interacting molecules, neurons, 
tissues and so forth. Network science is relatively well developed, 
with early applications in social networks and traffic systems91, 
and is also being applied to biological networks92,93. A challenge in 
biology has been the enormous number of molecules and the dif-
ficulty in fully mapping all the potential interactions, but large-scale 
experiments to generate protein–protein interaction networks are 
making headway94. We first discuss some theoretical implications of 
networks for aging, and then discuss approaches to studying them.

Information flow and multi-causality in networks. Biological 
systems can be considered as information systems (Box 1). Most 
biological molecules have multiple downstream targets, meaning 

they represent information that the biological system incorporates. 
Because biological regulatory networks are fine-tuned by natural 
selection to optimize dynamic equilibrium, internal decisions of the 
network—such as how much ATP to produce, or how inflamed to 
get—need to incorporate as much relevant information as possible. 
To do this successfully, networks have evolved specific structures 
that allow the system to synthesize large numbers of inputs, make 
an informed decision and then subsequently regulate large num-
bers of outputs, while still maintaining evolvability42,45. One such 
information structure is a ‘bowtie’95,96, with fewer components in  
the middle where the decision is made than inputs or outputs  
(Fig. 4). Having few intermediate pathways is known as ‘degener-
acy,’ in the sense that each pathway serves multiple functions. While 
actual biological pathways are usually more complex, from a sche-
matic and information-theory perspective the bowtie motif recurs 
often, including with canonical aging pathways, which coordinate 
an array of signals related to energy metabolism97. The example in 
Figure 4 shows a qualitative representation of how selected extrinsic 
and intrinsic factors influence multiple aging-related pathways that 
interact to regulate multiple aging-related mechanisms, as well as 
other processes35,98,99.

A conventional view of these pathways observes how they influ-
ence aging/lifespan, without asking why the network is structured 
this way. Bowties and similar structures explain why information 
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from multiple pathways must be integrated for the network to take 
an appropriate ‘decision’. Indeed, multiple pathways integrate to 
make multiple decisions in parallel. For example, inflammation 
both activates and is regulated by the mTOR pathway. At the cell 
scale in fibroblast-like synviocytes, for example, tumor necrosis 
factor senses environmental gradients and activates mTOR, which 
shifts inflammation from nuclear factor-κB (NF-κB) pathways to 
STAT1 pathways100. In rats, at the organism and tissue scale, lipo-
polysaccharide-induced inflammation activates mTOR and NF-κB 
pathways101. Likewise, sirtuins (notably SIRT1) both are mediated 
by inflammation and in turn control it, with SIRT1 activating tumor 
necrosis factor and NF-κB during sepsis102. This perspective may 
explain findings that are otherwise hard to explain: (1) findings of 
‘causality’ or ‘control’ in signaling pathways are often highly depen-
dent on the cell type, organism and experimental conditions; (2) 
bidirectional feedback loops, that is, inflammation → X → inflam-
mation; (3) inflammation affects multiple pathways; and (4) mul-
tiple pathways affect inflammation. Accordingly, it is hard to predict 
how interventions might affect inflammation, and the answer may 
vary across timescales.

The same pathways that are implicated in inflammation are also 
implicated in regulating oxidative stress, cancer, reproduction and 
metabolism. This is a natural consequence of the network’s degen-
eracy and its integration of information to optimize dynamic equi-
librium. This implies that we will not always succeed in elucidating 
molecular pathways by studying them one at a time: inflammatory 
responses are the result of a balance of numerous inputs filtered 
through multiple pathways, and the role of each thus depends on 
all the others simultaneously. In this context, traditional notions of 
causality break down103: when causality is sufficiently circular or 
contingent, it no longer makes sense to claim that A causes B. For 
example, depending on their cellular context, calpains may either 
activate caspase 3, leading to apoptosis, or degrade caspase 3, pre-
venting apoptosis104. At a more macro level, various types of dietary 
restriction impact various pathways, which interact to coordinate 
responses that impact longevity105. In this case, the question is no 
longer, ‘How can we intervene in pathway X to regulate lifespan?’ 
but rather, ‘How do pathways X, Y and Z coordinate to affect lon-
gevity-related mechanisms, and are there ways to optimize jointly 
to create broad health benefits, adapted as needed to the underlying 
genotype and state of the individual?’ This implies a more subtle, 
complex systems notion of causality, and is one of the key action-
able insights in aging research from complex systems theory: a tra-
ditional perspective suggests that single-molecule interventions will 
be found that substantially slow aging, and indeed many research-
ers are pursuing such approaches. A complex systems perspective 
emphasizes that there are high-dimensional trade-offs that the sys-
tem is balancing, and that interventions appearing to have benefits 
for one or several aspects of aging are likely either to have costs else-
where, or to have effects that are highly dependent on conditions. 
For example, several canonical anti-aging interventions have shown 
countervailing effects on various age-sensitive phenotypes106. These 
kinds of considerations may explain why it is so hard to generalize 
successful interventions in animal models (Alzheimer’s disease107 
and anti-aging108–110) into humans: context is crucial for understand-
ing the impact of an intervention. Appropriate modeling combined 
with experimentation, however, might elucidate multimodal inter-
ventions that dynamically optimize aging processes with minimal 
side effects98.

Methods to map and organize biological networks. Direct 
dynamical systems modeling is feasible when the number of path-
ways or variables being integrated is small. However, explicit models 
of complex networks in aging biology are still far from feasible in 
omics-based approaches with thousands or even millions of dis-
tinct variables. Luckily, the redundancy and interconnectedness of  

biological networks noted above mean that higher-order patterns 
can be generated through emergence; these higher-order patterns 
can then be quantified. Unsupervised graph-based approaches are 
one method for accomplishing this. They transform similarity or 
connectedness of nodes in a network into an adjacency or correla-
tion matrix. Various methods can then be applied to glean biological 
insight from these matrices, such as clustering algorithms to group 
nodes into clusters or modules. One example of this is a method 
called weighted gene correlation network analysis (WGCNA)111, 
which performs hierarchical clustering on a transformed adjacency 
matrix. In WGCNA, after modules are identified, the components 
of each can be combined into a single value called an ‘eigengene’, 
allowing the testing of associations between a whole network of 
genes and an outcome. Recently, WGCNA was applied to CpG 
methylation data to identify conserved epigenetic aging modules 
across tissues112, showing that module-scale information is more 
relevant than CpG-scale information. Nonlinear alternatives to 
WCGNA also exist. Manifold learning has been widely used in pop-
ular single-cell visualization tools, such as t-SNE74, uniform mani-
fold approximation and projection (UMAP)113 and PHATE114. For 
instance, PHATE can be extended to identify new trajectories that 
cells take during differentiation using single-cell RNA-sequencing 
data114. These network tools offer exciting opportunities for study-
ing complex dynamics of biological entities.

Computational dynamical modeling. Computational dynamic 
models can be used to simulate key aspects of network behavior, 
at scales ranging from cellular/molecular to the broad health state 
of an organism. On the cellular scale, the mathematized MARS 
(mitochondria, aberrant proteins, radicals and scavengers) model 
describes the breakdown of cellular homeostasis in a networked 
approach12. Similarly, the effects of mitochondrial dysfunction on 
key energy and stress signaling sensors such as AMPK, PTEN and 
sirtuins have been modeled115, revealing a conflict between imme-
diate survival and long-term cellular maintenance. More complete 
mechanistic models are emerging for limited, well-characterized 
networks60, and will continue to improve in both breadth and mech-
anistic detail.

Top-down computational models with discrete health states 
interacting with simple explicit networks116–118 have demonstrated 
how population-level measures such as survival curves can be gen-
erated from conceptually simple models of damage propagation 
within a complex system. While these models can be trained with 
detailed cross-sectional data to describe specific health measure-
ments119, they are not well suited to model continuous-valued exper-
imental data. For electrophysiological measurements, dynamical 
causal modeling makes similar simplifications120. Recent advances 
in machine learning have allowed general dynamics of continuous 
longitudinal data to be modeled by deep neural networks for more 
than 29 covariants121. Ultimately, we are interested in fundamen-
tal questions of aging at the organismal scale, and computational 
models will be needed to tie between scales, like risers tying steps 
together into a staircase. Pragmatically, this multi-scale approach 
can start where the good data lies. This is the ‘middle-out’ strategy 
of systems biology122,123.

The way forward
Complex systems approaches will lead naturally to a more formal 
and generalizable understanding of aging. Molecular-scale changes 
during aging occur not in isolation but within ensembles of inter-
acting components, allowing for the emergence of collective pro-
cesses. This challenges traditional notions of causality: Aging is 
not necessarily traceable to discrete molecular/cellular processes, 
but could emerge from breakdowns in the interactions of many 
processes within and across organizational scales. Such break-
downs might arise from: (1) problems with information flow in the  
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networks, impeding the organism’s ability to optimize regulation; 
(2) compensatory strategies, features of network robustness where a 
suboptimal regulatory strategy is adopted to mitigate one problem, 
but may create others; and (3) from trade-offs between robustness 
and other key features such as function or resource use over evolu-
tionary timescales, including trade-offs between cancer protection 
and functional integrity. These principles may apply to aging biol-
ogy broadly, but also to sub-phenomena such as cognitive decline 
and inflamm-aging.

A complex systems perspective will accelerate progress in the 
field not just methodologically, but also conceptually, leading us to 
ask questions about systems, networks and emergence that comple-
ment and integrate findings on components, pathways and discrete 
mechanisms. It also holds substantial potential to explain one of 
the key features of aging: its heterogeneity. While most research on 
aging naturally focuses on what is common or universal, a complex 
systems framework lends itself to explaining why aging can differ so 
much across individuals, populations and species. This heterogene-
ity underlies intrinsic predictive uncertainty in aging processes and 
is crucial to understand if we wish interventions to be effective and 
safe for diverse populations.

A complex systems perspective leads to several actionable 
insights for the field, notably:
 1. Identify and study emergent processes at intermediate biologi-

cal scales. Use of omics data should be guided by the perspec-
tive that the countless biological molecules are not independ-
ent data points but windows into functional processes at higher 
scales of biological organization, many of which have yet to 
be identified. The methods mentioned above, when applied 
thoughtfully, can help identify such processes and study them 
as they relate to aging and as they change in different contexts.

 2. Consider the joint effects of multiple aging processes. In par-
ticular, consider (a) how various aging processes may interact 
with each other via networks of effects, (b) how there may be 
trade-offs among different aging processes, (c) how effects may 
propagate up or down scales of hierarchical organization, and 
(d) how buffering may or may not mitigate the impacts of indi-
vidual mechanisms, and how individual mechanisms or dam-
age profiles may wear down global buffering. This may help us 
finally untangle the relationship between aging and disease.

 3. Develop novel approaches to quantifying resilience, buffer-
ing, critical transitions and information flow. Pathway-based 
biomarkers may be less actionable because they risk ignoring 
synergies, antagonisms and correlated effects among pathways. 
Global metrics of system state are thus needed, and these are 
likely to be based on system dynamics and interactions across 
components. Such approaches are now in their infancy.

 4. Integrate experimental approaches with modeling and theory. 
Many bench biologists and theoreticians should continue the 
trend toward integration not just of big data, but also of simula-
tions and mathematical models that help contextualize experi-
mental findings within and across species, and in the context of 
medical intervention.

 5. Accelerate collection of more complex data. Current trends to-
ward big data124,125 should explicitly attempt not just to maxi-
mize data quantity, but also to simultaneously collect data on 
as many as possible of (a) interaction networks, (b) dynamic 
time series data, (c) stimulus–response or perturbation experi-
ments and (d) cross-scale effects. Key insights will come from 
integrating across these data types.

 6. Develop multimodal interventions that target systemic effects 
rather than individual molecules98. Targeting individual path-
ways or molecules risks playing whack-a-mole with aging-
related processes. Lifestyle interventions or combination life-
style/pharmaceutical interventions are particularly promising 

as more holistic approaches, and might eventually be highly 
personalized based on the metrics of underlying system state 
mentioned above, which could serve as surrogate endpoints  
in trials.

Many of these insights are already starting to be applied but 
could be accelerated. To do so, we may also need more coordination 
of the research effort through centralized databases, collaborative 
networks and structured calls from funders to establish teams.

Perspectives and conclusions
While we are far from the first to link complex systems ideas to 
aging13,41,61,126–130, aging biology research has arrived in a position 
similar to ecology 50 years ago and is starting to integrate complex 
systems perspectives into all types of research. Mechanistic, reduc-
tionist research has provided profound insights—identification of 
key pathways, genes, mechanisms and processes. However, in the 
absence of a clear framework to integrate these insights, research-
ers are increasingly feeling compelled to break out of mechanistic 
silos (for example, protein homeostasis, DNA damage, inflamm-
aging and telomeres). Going forward, reductionist and complex 
systems approaches will need to work hand-in-hand to elucidate 
the ecosystem of interacting aging processes. Fortunately, appropri-
ate methods are beginning to arrive, and numerous studies show 
that their application changes both our questions and our conclu-
sions13,58,83,118,119,131,132. The shift toward complex systems thinking is 
well underway. Our hope is that this article will provide a common 
framework to accelerate this process and highlight the tools and 
perspectives available so that theoretical, clinical, quantitative and 
bench scientists reach out to complementary experts and, through 
collaboration, integrate the diverse knowledge in our field to better 
respond to the challenges aging presents for science and society.
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